
A b s t r a c t. This study was planned to examine the use of

LandSat ETM+ images to develop a model for monitoring spatial

variability of soil cation exchange capacity in a semi-arid area of

Neyshaboor. 300 field data were collected from specific GPS re-

gistered points, 277 of which were error free, to be analysed in the

soil laboratory. The statistical analysis showed that there was a small

R-Squared value, 0.17, when we used the whole data set. Visual

interpretation of the graphs showed a trend among some of the data

in the data set. Forty points were filtered based on the trends, and

the statistical analysis was repeated for those data. It was discove-

red that the 40 series were more or less in the same environmental

conditions; most of them were located in disturbed soils or aban-

doned lands with sparse vegetation cover. The soil was classified

into high and medium salinity, with variable carbon (1.0 to 1.6%),

heavy textured and with high silt and clay. Finally it was concluded

that two different models could be fitted in the data based on their

spatial dependency. The current models are able to explain spatial

variability in almost 45 to 65% of the cases.

K e y w o r d s: soil cation exchange capacity, remote sensing,

soil properties, soil spatial variability

INTRODUCTION

Using remote sensing technology often reduces costs

and increases accuracy and speed. By using remote sensing

data three main categories of information are recognised:

soil properties based on its reflectance band and the resulting

images, the effect of soil surface conditions on the reflected

radiation, and the simulated patterns which can be used for

producing maps of soil variability (Johannsen et al., 1998).

The most comprehensive and detailed geographical

world soil resources are presented in the global soil map in

the scale of 1:5 000 000. This map is an integrated national

and regional map based on a common legend. It contains

different information including available water capacity,

soil organic carbon content, soil pH, soils cation exchange

capacity (CEC), soil drainage classes, soil depth classes and

so on. The density and quality of available profiles is drama-

tically variable from one area to another (Batjes, 2002).

Different studies show that the relationship between

satellite data and soil characteristics is more clear in 3.0 to

8.2 �m. Spectral response in this band is due to differences in

organic matter content, iron levels, soil moisture and soil

texture. The highest correlation with soil characteristics

derived from the reflected bands data is known as albedo

(Post et al., 2000).

In the saline area, most of the signal strengths are related

to soluble salt concentration, while in non-saline soil, EC

variability of soil is a function of organic matter content, soil

texture, soil moisture and soil cation exchange capacity

(Barnes et al., 2003).

Matinfar et al. (2011) used ASTER sensor data in order

to study soils, and their results showed soils which have soft

and dark uneven surfaces that are well separated in visible

and thermal wave.

Fox and Metla (2005) took three types of soil line and

used PCA (Principal component analysis) and regression

analysis to assess soil characteristics, including soil organic

carbon and exchange capacity. Those were compared and

showed that PCA with high correlation (R
2
= 0.32) gave bet-

ter results for describing soil characteristics changes than the

other two analysis methods. The researchers suggested that

PCA could be used as a method of sampling in determining

location of soil samples compared to the soil line model.

Remote sensing technology has a high potential for the

characterisation of the spatial variation of soil properties at

large scales, so this approach can provide valuable information

for application to precision agriculture and environmental
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modelling. According to this goal, we explored the pos-

sibility of using digital analysis of satellite data and also

multivariate regression analysis between cation exchange

capacity and image data to find the best model for moni-

toring and study of soil in arid and semi-arid areas. The po-

tential of ETM
+

images for studying cation exchange ca-

pacity in soil was also investigated.

MATERIAL AND METHODS

The study area was located in the Neyshaboor plain in

Khorasan-Razavi province in the N-E of Iran, geographi-

cally located between longitudes 58.57 to 59.13° and lati-

tudes 35.85 to 36.25° (Fig. 1). The climate is arid to semi-

arid, with annual average temperature of 14.5°C and preci-

pitation of 250 mm based on Ambergeh climate classifi-

cation method. According to land-use maps, this area is ge-

nerally saline with agricultural activities.

LandSat ETM
+

images including 6 bands with 30 m re-

solution, one thermal band with 60 m resolution and a pan-

chromatic band with 15 m resolution, from track 160 and

row 35, taken on 10th of July 2002, were used. The images

were originally corrected for general geometric and

radiometric errors.

However, more geometric corrections were also applied

for more confidence. Various image processing techniques

were used, including image enhancement, PCA, tasseled

cap transformation, and also 50 vegetation and soil indices

derived from the images. Some of the indices are listed in

Table 1.

The ETM
+

images were converted into an appropriate

format to be used in ERDAS Imagine 8.6 and IDRISI

Kilimanjaro software.

After pre-processing of the images, their general fea-

tures were compared with the corresponding land use map

(scale: 1:250 000). A part of Neyshaboor plain with 765 km
2

was selected based on soil properties and vegetation cover

estimated from field observations. That area is contained in

an area of 1 881×1 497 pixels in the image. The area was

divided into three main parts depending on their salinity

determined from land use map and field observations. A grid

with 10×50 mesh was drawn, with 1 000 m grid length on the

area (Fig. 2). 100 of the grid cells were randomly selected

and 3 separate points 100 m apart were chosen in each se-

lected cell as sampling points. A sample of soil (20×20 cm

surface and 20 cm depth) was recovered from each sampling

point. The geographic position was recorded by a Garmin

GPS and the samples were transported to a soil laboratory

for testing.

The recovered soil samples were air dried and then

sieved through a 2 mm sieve for laboratory testing. Different

parameters were measured, including soil acidity by using

a pH meter, EC in soil saturation extracts by an EC meter,

soil organic carbon (SOC) by Walkely and Black (1934) me-

thod, cation exchange capacity (CEC) by Chapman (1965)

method, and soil particle size distribution was determined

by standard hydrometer method (Gee and Bauder, 1986).

JMP4 software was used for the statistical analysis. The

derived R-Squares from regression analysis between soil

cation exchange capacity values and the values of spectral

satellite image were evaluated. Then the most appropriate

independent variables were selected to estimate the de-

pendent variables based on a multivariate linear regression

(stepwise regression) equation. All the coefficients were con-

sidered statistically significant at 95% confidence level.

RESULTS AND DISCUSSION

The R-Square was low when all of the data from the low

to high salinity soil samples were considered in the regres-

sion analysis (Table 2). The highest R-squares were obtain-

ed between the main bands, including bands 1, 2 and 3, the

amounts for which were 0.06 0.04 and 0.1, respectively.

Indices (PD311 = TM3-TM2), (PD321 =TM3-TM1), BI1, SI

showed a higher correlation. Appropriate model for achiev-

ing stepwise regression method was applied and the va-

riables with the highest R-square were used to obtain Eq. (1)

for the total data set.

CEC= 9.6+4.09 PD321+3.3 PD311+0.08 b3 . (1)

In this equation, CEC is cation exchange capacity in

meq 100 g
-1

with R-square=0.17 and RMSE = 4.22. Regres-

sion analysis data for the whole range of the data set, in

which the non-saline and saline soils are included, showed

very low R-squares. The results of regression analysis, sta-

tistically significant at 5% level, showed that Eq. (1) could

not provide a good estimate for CEC. Obviously, this equa-

tion with low RMSE coefficient does not have a high R-square.

Phillips (1994) in his research showed that R-squared values

of 0.2 to 0.5 can show comprehensive information for soil

studies in large scale studies. It is not possible to have a cor-

rect assess of the cation exchange capacity for the region if

this equation with the obtained R-square for the entire data is

used. It should be noted that other researchers like Dematte

et al. (2007) also reported weak correlations between some

soil chemical properties such as Ca, Mg, Al, pH and K

values in soil. Although, the correlation coefficient was

between 0.3 and 0.4 when organic matter, sand and clay

percentage were considered for the analysis. Accordingly,

the distribution diagrams were studied closely and it was

observed that some parts of the process are different than

others (Fig. 3). The points with different digital values were

classified and soil properties were analysed separately in

each class (Fig. 4).
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Fig. 1. Geographical location of the study area.

Index name Equation Reference

Near Inferared Ratio ( NIR) TM4/TM3 Pettorelli et al., 2005

Leaf Water Content( Mid-IR-Index) TM5/TM7 Pettorelli et al., 2005

Normalized Difference Vegetation

Index
(TM4-TM3)/(TM4+TM3) Foody et al., 2001

Transformed Vegetation Index (TM5-TM3)/(TM5+TM3) Pettorelli et al., 2005

Reflectance Absorption Index TM4/(TM3+TM5) Arzani and King, 2008

Modified Normalized Difference (TM4-(1.2×TM3)/(TM4+TM3) Pettorelli et al., 2005

PD321 TM3-TM2 Arzani and King, 2008

PD311 TM3-TM1 Arzani and King, 2008

MIRV1 (TM7-TM3)/(TM7+TM3) Leblon, 1993

DVI TM4-TM3 Foody et al., 2001

MIRV2 (TM5-TM3)/(TM5-TM3) Arzani and King, 2008

Green Vegetation Index -0.29 (G) -0.56(R)+0.6(IR)+0.49(IR) Leblon, 1993

SAVI [NIR-RED)/(NIR+RED+L)] × (1+L) Pettorelli et al., 2005

GEMI �× (1-0.25×�)-(Red-0.125) / (1-Red) Nikolakopoulos , 2003

OSAVI (NIR -Red) / (NIR + Red + 0.16) Nikolakopoulos , 2003

Stress-related (TM1×TM2)/TM3 Foody et al., 2001

Normalized-based (TM4 - (TM1 + TM2) )/(TM4 + (TM1 + TM2) ) Foody et al., 2001

PCA1 Derived from principal components of bands 1, 2 and 3
Bahtti et al., 1991;

Frazier and Cheng, 1989

PCA2 Derived from principal components of bands 4, 5 and 7
Bahtti et al., 1991;

Frazier and Cheng, 1989

PCA3 Derived from principal components of bands 1,2, 3, 5, 7 and 4
Bahtti et al., 1991;

Frazier and Cheng, 1989

Brightness Brightness derived from tasseled cap
Bahtti et al., 1991;

Frazier and Cheng, 1989

Greenness Greeness band derived from tasseled cap
Bahtti et al., 1991;

Frazier and Cheng, 1989

Wetness Humid bands derived from tasseled cap
Bahtti et al., 1991;

Frazier and Cheng, 1989

T a b l e 1. Some of the principal and artificial bands used in this research



The results showed that the 40 series were located in

degraded and abandoned agricultural lands with scattered

vegetation cover. The areas contain moderate to high sali-

nity lands in the area. Organic carbon in these parts is va-

riable between 1 and 1.6%. Total amounts of silt and clay in

these lands are high and heavy textured soils are included

(Fig. 5). This shows that high levels of organic carbon in the

low density vegetation areas (due to destruction of vegeta-

tion) are affected by the amount of cation exchange capacity

and percentage of clay, especially high electrical conduc-

tivity, in the region which is similar to the results reported by

Vagen et al. (2006). Field observations also showed that wa-

ter level in those points is high. On the other hand, the effects

of salt and sodium on the soil surface were also observed.

Because of all subscription and spectral characteristics

of physical and chemical soil in these parts, another

regression analysis was performed. The R-square for the

remaining points were re-calculated and it was found that

higher R-square values were obtained in relation to the

general state when all of the data were considered. For

example, R-square was 0.1 for band 3 for the whole data set

while it was increased to 0.36 and 0.57 for the rest of the data

set and the 40 series, respectively (Tables 3 and 4).

Therefore, the R-square value, which is statistically

significant at the 5% level, is high only when the cation

exchange capacity and digital values from combination

bands are used. The highest R-square was derived for the 40

series when the original bands 1, 2, 3, the indices and the

analysis of RI, SI, BI1, BI2, PD311, PD321, PCA3 and

brightness components were applied. The highest R-square

for the rest of points was derived when band 3, the indices

and the analysis of PCA1, PD321, GEMI, VI5, BI1 and SI

were applied in the regression equation.

The results showed that principal component analysis

and regression models can be used to assess soil properties in-

cluding cation exchange capacity. Fox and Metla (2005)

also obtained similar results in Mid-West of the United States.

For the separated homogeneous data the regression

coefficients increased considerably. R-square = 0.65 was ob-

tained when the 40 series was applied, which shows a good

correlation and dependency between the values. After sepa-

rating the data series, it was observed that the residual data

also showed higher R-square value. Figure 6 shows the

scatter diagrams of cation exchange capacity obtained by the

models for the 40 series and the rest of the data set.

As it can be seen in Fig. 7, most of the data values are

located in the range of 95%. Band 3 and PD311 were used

for series 1 and band 3 and PD321 were used for series 2 to

estimate cation exchange in the study area. These data

provide higher R-square and lower RMSE when the data

applied in the regression analysis are taken from the area

with homogenous characteristics. In this analysis it was

found that after fitting the data Eq. (2) (R-square = 0.62 and

RMSE = 2.87) and Eq. (3) (R-square = 0.47 and RMSE = 2.13)

for series 1 and 2, respectively can be considered as appro-

priate models for estimating this variable.
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Index R2 Index R2

Band 1 0.06000 Band 4 0.00300

Band 2 0.04000 Band 5 0.00800

Band 3 0.10000 Band 7 0.01000

PCA1 0.01000 Brightness 0.00200

PCA2 0.00800 Greenness 0.00050

PCA3 0.00300 Wetness 0.00006

PD322 0.04000 GEMI 0.00040

PD312 0.01000 MIRV1 0.00001

PD311 0.02700 MIRV2 0.00002

PD321 0.05000 VNIR1 0.00030

Stress-Related 0.00040 VNIR2 0.00050

Normalized-

Based
0.00070 NDVI 0.00100

IPVI 0.00200 TVI 0.00100

OSAVI 0.00300 IR 0.00050

BI1 0.00800 IR2 0.00070

SI 0.00300 MND 0.00010

RI 0.00260 MINI 0.00070

MSAVI 0.00300 DVI 0.00020

BI2 0.00520
Complex

Division2
0.00070

GVI 0.00080
Complex

Division1
0.00030

VI1 0.00100 NDSI 0.00100

VI2 0.00003 EVI 0.00200

VI3 0.01000 G2 0.00040

VI4 0.00016 RA 0.00020

VI5 0.00230 SAVI 0.00200

VI6 0.00180 MIR 0.00022

VI7 0.00001 RVI 0.00001

VI8 0.00002
Complex

Multiratio
0.00200

VI9 0.00002 Ratio-Based 0.00100

MSI 0.00040 COSRI 0.00100

MSR 0.00100 RATIO 0.00080

T a b l e 2 . R-squares derived from regression between different

vegetation indices and CEC applying the total data

Index R2 Index R2

Band 1 0.2500 Band 4 0.0700

Band 2 0.2200 Band 5 0.1600

Band 3 0.3600 Band 7 0.1800

PCA1 0.3000 Brightness 0.2000

PCA2 0.2000 Greenness 0.2000

PCA3 0.2300 Wetness 0.1100

PD322 0.2000 GEMI 0.2600

PD312 0.1100 MIRV1 0.0200

PD311 0.2000 MIRV2 0.0400

PD321 0.3300 VNIR1 0.0300

Stress-Related 0.0400 VNIR2 0.0500

Normalized-

Based
0.0700 NDVI 0.1000

IPVI 0.2000 TVI 0.1000

OSAVI 0.2000 IR 0.0500

BI1 0.2800 IR2 0.0700

SI 0.3000 MND 0.0100

RI 0.2400 MINI 0.0700

MSAVI 0.2000 DVI 0.0200

BI2 0.2500
Complex

Division2
0.0800

GVI 0.0800
Complex

Division1
0.0200

VI1 0.1000 NDSI 0.1000

VI2 0.0004 EVI 0.0200

VI3 0.0400 G2 0.1600

VI4 0.0100 RA 0.0200

VI5 0.2300 SAVI 0.2000

VI6 0.1400 MIR 0.1000

VI7 0.0100 RVI 0.1600

VI8 0.0200
Complex

Multiratio
0.0400

VI9 0.0200 Ratio-Based 0.2000

MSI 0.0400 COSRI 0.1000

MSR 0.1000 RATIO 0.1000

T a b l e 3. R-squares derived from regression between different

vegetation indices and CEC applying the 273 remaining data



CEC= -8.05+0.37 PD321+0.13 b3 (2)

CEC= 9.15 +0.24 PD311+0.15 b3 (3)

Statistical analysis showed that PD321 and PD311 in-

dices are more correlated with the amount of cation exchan-

ge capacity than other bands. It should be noted that band 1,

2 and 3 are involved in calculating both of the indices.

Therefore, experimental data with homogeneous cha-

racteristics have more effects on reflectance, so that the

effect could be seen as a similar trend in all of the image

processing used for monitoring of the changes in the region.

The above results are similar with the ones that Huete

(1996) reported. This shows that the digital analysis of

ETM
+

images can be used for evaluation of natural pheno-

mena and land cover.

The results of spectral analysis showed that the total

values of silt and clay in the segregated parts of the study

area is high, which affected soil darkness and therefore

resulted in more light absorption. Research in this field by

White et al. (1997) showed that soils with high amounts of

sand have almost no absorption in the visible and infrared

band. Formaggio et al. (1996) also reported that the re-

sulting reflectance bands from soils with higher CEC are

much lower than other soils.

414 M. GHAEMI et al.
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Fig. 3. Scatter diagram of soil cation exchange capacity against digital numbers in some of the analyses (when all the data set was used).



CONCLUSIONS

1. Accordingly, the potential of remote sensing for soil

variability in arid and semi-arid areas is limited because of

special features of land cover and soils in those areas.

2. Using different image processing such as band ratios

and principal component analysis increased R-squared

values and provided better information than single band

analysis. However, care must be taken in selecting appro-

priate methods according to the area features and the highest

correlation coefficient.

3. The analysis of digital numbers showed that ETM
+

images have a great potential for the evaluation of soil

properties in areas with homogenous features.

4. The practical results can be used for applying proper

management programs in the study area. It was also conclu-

ded that because of complexity in soil properties radiation

signature it is hard to distinguish different soil properties by

using only remote sensing data. Finally, this study showed

that spatial analysis is essential for the study area because the

soil properties are varied spatially very much.
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Fig. 4. Scatter diagram soil cation exchange capacity against digital numbers in some of the analyses (the 40 series was used).

Fig. 5. Geographical positions of the 40 series data points with

ETM+ image of the study area (in background).
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Index R2 Index R2

Band 1 0.3700 Band 4 0.0040

Band 2 0.4400 Band 5 0.3200

Band 3 0.5700 Band 7 0.2400

PCA1 0.3500 Brightness 0.5000

PCA2 0.3400 Greenness 0.1500

PCA3 0.4200 Wetness 0.1700

PD322 0.3600 GEMI 0.1000

PD312 0.4300 MIRV1 0.0160

PD311 0.5100 MIRV2 0.2000

PD321 0.4700 VNIR1 0.0500

Stress-Related 0.0400 VNIR2 0.1000

Normalized-

Based
0.0700 NDVI 0.2000

IPVI 0.2000 TVI 0.2000

OSAVI 0.2000 IR 0.1000

BI1 0.5000 IR2 0.0800

SI 0.4700 MND 0.2000

RI 0.5200 MINI 0.1000

MSAVI 0.2000 DVI 0.2100

BI2 0.4200
Complex

Division2
0.1300

GVI 0.1200
Complex

Division1
0.1400

VI1 0.2000 NDSI 0.2000

VI2 0.0600 EVI 0.0400

VI3 0.0004 G2 0.2000

VI4 0.2200 RA 0.1500

VI5 0.3100 SAVI 0.2000

VI6 0.1600 MIR 0.0500

VI7 0.0200 RVI 0.2000

VI8 0.2900
Complex

Multiratio
0.2000

VI9 0.0100 Ratio-Based 0.1000

MSI 0.1100 COSRI 0.1500

MSR 0.2000 RATIO 0.2000

T a b l e 4. R-squares derived from regression between different

vegetation indices and CEC applying the 40 series data



REFERENCES

Arzani H. and King G.W., 2008. Application of remote sensing

(landsat TM data) for vegetation parameters measurement in

western division of NSW. Int. Grassland Congr., 29 June –

5 July, Hohhot, China.

Bahtti A.U., Mulla D.J., and Frazier B.E., 1991. Estimation of

soil properties and wheat yields on complex eroded hills

using geostatistics and thematic mapper images. Remote

sens. Environment, 31, 181-191.

Barnes E.M., Sudduth K.A., Hummel J.W., Lesch S.M., Corwin

D.L., Yang C., Daughtry C.S.T., and Bausch W.C., 2003.

Remote and ground-based sensore techniques to map soil

properties. Photogrammetric Eng. Remote Sensing, 69(6),

619-630.

Batjes N.H., 2002. isric-wise global data set of derived soil

properties on a 0.5 by degree grid (version 2). international

soil reference and information center (ISRIC). Report,

2003/03 http:.\\www.isric.org), wageningen, 1-14

Chapman H.D., 1965. Cation exchange capacity. In: Black, C.A.

etal. (eds.). Methods of Soil Analysis: Part 2. Monograph,

Am. Soc. Agronomy, 9, 891-901.

Dematte J.A.M., Galodos M.V., Guimaraes R.V., Genu A.M.,

Nanins M.R., and Zullo J., 2007. Quantification of tropical

soil attributes from ETM+ LANDSAT-7 data. Int. J. Remote

Sensing, 17(28), 3813-3829.

Foody G.M., Cutler M., Mcmorrow J., Pelz D., Tangki H.,

Boyd D.S., and Douglas I., 2001. Mapping the biomass of

Bornean tropical rain forest from remotely sensed data.

J. Global Ecology Biogeography, 10, 379-387.

Formaggio A.R., Epiphanio J.C.N., Valeriano M.M., and

Olivera J.B., 1996. Comportamento spectral (450-2.450 nm)

de solos tropic is de Sao Paulo [Spectral (450-2450 nm)

behavior of tropical soils from the State of Sao Paulo].

Revista Brasileira de Ciencia do Solo, 20, 467-474.

Fox G.A. and Metla R., 2005. Soil property analysis using prin-

cipal components analysis, soil line and regression models.

J. Soil Sci. Soc. Am., 69, 4782-1788.

Frazier B.E. and Cheng Y., 1989. Remote sensing of soils in

eastern palouse region with landsat thematic mapper,

Remote sense. Environment, 28, 317-325.

Gee G.W. and Bauder J.W., 1986. Particle-size analysis. In:

Methods of Soil Analysis Part 1. Soil Science Society of

America Book Series 5, Madison, WI, USA.

Huete A.R., 1996. Extension of soil spectra to the satellite:

atmosphere, geometric and sensor considerations. Photo-

interpretation, 34, 101-114.

Johannsen C.J., Carter P.G., Willis P.R., Owubah E., Erickson B.,

Ross K., and Targulian N., 1998. Applying remote sensing

technology to precision farming. Proc. IV Int. Conf. Pre-

cision Agriculture, July 19-22, St. Paul, MN, USA.

Leblon B., 1993. Soil and vegetation optical properties. In:

Applications in Remote Sensing, Volume 4, The Inter-

national Center for Remote Sensing Education. Wiley Press,

New York, USA.

Matinfar H.R., Sarmadian F., and Alavipanah S.K., 2011. Use

of DEM and ASTER sensor data for soil and agricultural

characterizing. Int. Agrophys., 25, 37-46.

Nikolakopoulos K.G., 2003. Use of vegetation indexes with

ASTER VNIR data for burnt areas detection in Western

Peloponnese, Greece. IEEE Int. Geoscience and Remote

Sensing Symp., September 21-25, Toulouse, France.

Pettorelli N., Vik J.O., Mysterud A., Gaillard J.M., Tucker C.J.,

and Stenseth N.C., 2005. Using the satellite-derived NDVI

to assess ecological responses to environmental change.

J. Trends Ecology Evolution, 9(20), 503-510.

Phillips J.D., 1994. Deterministic uncertainty in landscapes Earth

Surface proc. Landforms,19, 389-401.

Post D.F., Fimbres A., Matthiass A.D., Sano E.E., Accioly L.,

Batchily A.K., and Ferreira L.G., 2000. Predicting soil

albedo from soil color and spectral reflectance data. Soil Sci.

Soc. Am. J., 64(3), 1027-1034.

Vagen T.G., Shepherd K.D., and Walsh M.G., 2006. Sensing

landscape level change in soil fertility following de-

forestation and conversion in the highlands of Madagascar

using Vis-NIR spectroscopy. Geoderma, 133, 281-294.

Walkely A. and Black I.A., 1934. An examination of the

Degtjareff method for determining soil organic matter and

a proposed modification of the chromic acid titration

method. Soil Sci., 37, 29-38.

White K., Walden J., Drake N., Eckardt F., and Settle J., 1997.

Mapping the iron oxide content of dune sands, Namib Sand

Sea, Namibia, using Landsat Thematic Mapper Data.

Remote Sensing of Environment, 62, 30-39.

USING SATELLITE DATA FOR SOIL CATION EXCHANGE CAPACITY STUDIES 417


